Relaxed penalty at infinity for semilinear elliptic equations

نویسنده

  • K. Tintarev
چکیده

The paper gives a different proof for exitence of ground state solutions to the semilinear problem −∆u + u = b(x)up, p > 2, on RN , where b is invariant with respect to a free acting subgroup of O(N) with m elements. While the standard concentration compactness argument suggests the solvability condition inf b(x)/b∞ ≥ 1, symmetric ground state solutions exist whenever inf b(x)/b∞ > δm, where δm = m− p−2 2 < 1. ∗Mathematics Subject Classifications: 35J70, 35J20, 49R50.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nontrivial solutions of elliptic semilinear equations at resonance

We find nontrivial solutions for semilinear boundary value problems having resonance both at zero and at infinity.

متن کامل

Nonexistence of Nonconstant Global Minimizers with Limit at ∞ of Semilinear Elliptic Equations in All of Rn

We prove nonexistence of nonconstant global minimizers with limit at infinity of the semilinear elliptic equation −∆u = f(u) in the whole R , where f ∈ C(R) is a general nonlinearity and N ≥ 1 is any dimension. As a corollary of this result, we establish nonexistence of nonconstant bounded radial global minimizers of the previous equation.

متن کامل

Asymptotic behavior of solutions of semilinear elliptic equations in unbounded domains: two approaches

In this paper, we study the asymptotic behavior as x1 → +∞ of solutions of semilinear elliptic equations in quarteror half-spaces, for which the value at x1 = 0 is given. We prove the uniqueness and characterize the one-dimensional or constant profile of the solutions at infinity. To do so, we use two different approaches. The first one is a pure PDE approach and it is based on the maximum prin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003